Miniature hexapod microrobot for optical alignment; removable magnetic plate; brushless DC motor; 5 kg load capacity; 20 mm/s velocity; 0.5 m cable length. Connecting cables are not included in the scope of delivery and must be ordered separately.
H-811.F2 6-Axis Miniature Hexapod
Ideal for Fiber Alignment
- Travel ranges to ±17 mm / ±21°
- Compact design
- Removable magnetic plate
- High dynamics and precision
- Freely programmable, virtual pivot point
- Superior lifetime
Parallel-kinematic design for six degrees of freedom, making it significantly more compact and stiff than serial-kinematic systems, higher dynamics, no moved cables: Higher reliability, reduced friction.
Extensive Software Package
The software package included in the scope of delivery allows integration of the system into virtually any environment. All common operating systems such as Windows, Linux, and macOS as well as a large number of common programming languages such as Python, MATLAB, and NI LabVIEW are supported. Thanks to sophisticated program examples and the use of software tools such as PIMikroMove, the time between starting integration and productive operation is shortened considerably.
Brushless DC Motor (BLDC)
Brushless DC motors are particularly suitable for high rotational speeds. They can be controlled very accurately and ensure high precision. Because they dispense with sliding contacts, they run smoothly, are wear-free and therefore achieve a long lifetime.
Removable magnetic plate
Accelerate your workflows. The next workpiece can be prepared parallel to our automated process step. The removable magnetic plate can be disassembled quickly without tools and subsequently reassembled accurately each time.
PIVirtualMove
The simulation software simulates the limits of the workspace and load capacity of a hexapod. Therefore, even before purchasing, you can check whether a particular hexapod model can handle the loads, forces, and torques occurring in an application. For this purpose, the simulation tool takes the position and motion of the hexapod as well as the pivot point and several reference coordinate systems into account.
Application fields
Industry and research, micromanufacturing, fiber alignment, and the alignment of optical components.
Specifications
Specifications
Motion | H-811.F2 | Tolerance |
---|---|---|
Active axes | X ǀ Y ǀ Z ǀ θX ǀ θY ǀ θZ | |
Travel range in X | ± 17 mm | |
Travel range in Y | ± 16 mm | |
Travel range in Z | ± 6.5 mm | |
Rotation range in θX | ± 10 ° | |
Rotation range in θY | ± 10 ° | |
Rotation range in θZ | ± 21 ° | |
Maximum velocity in X | 20 mm/s | |
Maximum velocity in Y | 20 mm/s | |
Maximum velocity in Z | 20 mm/s | |
Maximum angular velocity in θX | 500 mrad/s | |
Maximum angular velocity in θY | 500 mrad/s | |
Maximum angular velocity in θZ | 500 mrad/s | |
Typical velocity in X | 10 mm/s | |
Typical velocity in Y | 10 mm/s | |
Typical velocity in Z | 10 mm/s | |
Typical angular velocity in θX | 250 mrad/s | |
Typical angular velocity in θY | 250 mrad/s | |
Typical angular velocity in θZ | 250 mrad/s | |
Positioning | H-811.F2 | Tolerance |
Minimum incremental motion in X | 0.2 µm | typ. |
Minimum incremental motion in Y | 0.2 µm | typ. |
Minimum incremental motion in Z | 0.08 µm | typ. |
Minimum incremental motion in θX | 2 µrad | typ. |
Minimum incremental motion in θY | 2 µrad | typ. |
Minimum incremental motion in θZ | 3 µrad | typ. |
Unidirectional repeatability in X | ± 0.15 µm | typ. |
Unidirectional repeatability in Y | ± 0.15 µm | typ. |
Unidirectional repeatability in Z | ± 0.06 µm | typ. |
Unidirectional repeatability in θX | ± 2 µrad | typ. |
Unidirectional repeatability in θY | ± 2 µrad | typ. |
Unidirectional repeatability in θZ | ± 3 µrad | typ. |
Backlash in X | 0.2 µm | typ. |
Backlash in Y | 0.2 µm | typ. |
Backlash in Z | 0.06 µm | typ. |
Backlash in θX | 2 µrad | typ. |
Backlash in θY | 2 µrad | typ. |
Backlash in θZ | 3 µrad | typ. |
Integrated sensor | Incremental rotary encoder | |
Drive Properties | H-811.F2 | Tolerance |
Drive type | Brushless DC motor | |
Mechanical Properties | H-811.F2 | Tolerance |
Stiffness in X | 0.7 N/µm | |
Stiffness in Y | 0.7 N/µm | |
Stiffness in Z | 8 N/µm | |
Maximum load capacity, base plate in any orientation | 2.5 kg | |
Maximum load capacity, base plate horizontal | 5 kg | |
Maximum holding force, base plate in any orientation | 2 N | |
Maximum holding force, base plate horizontal | 12 N | |
Overall mass | 2.2 kg | |
Material | Stainless steel, aluminum | |
Miscellaneous | H-811.F2 | Tolerance |
Operating temperature range | 0 to 50 °C | |
Connector for data transmission | HD D-sub 78 (m) | |
Connector for supply voltage | M12 4-pole (m) | |
Cable length | 0.5 m | |
Outer diameter power supply cable | 4.95 mm | |
Minimum bending radius for fixed installation, power supply | 25 mm | |
Outer diameter data transmission cable | 9.5 mm | |
Minimum bending radius for fixed installation, data transmission | 95 mm | |
Recommended controllers / drivers | C-887.5x |
Scanning times: Typical time span for scanning the entire area and moving to the highest intensity
Note on maximum payload and maximum holding force: The specified values apply to the hexapod without the removable magnetic plate.
The cables fixed to the H-811.F2 are 0.5 m long respectively.
The cables fixed to the H-811.F2 are not drag chain compatible.
Connecting cables are not included in the scope of delivery and must be ordered separately.
Ask about customized versions.
When measuring position specifications, typical velocity is used. The data is included in the delivery of the product in the form of a measurement report and is stored at PI.
The maximum travel ranges of the individual coordinates (X, Y, Z, θX, θY, θZ) are interdependent. The data for each axis shows its maximum travel range when all other axes are in the zero position of the nominal travel range and the default coordinate system is in use, or rather when the pivot point is set to 0,0,0.
At PI, technical data is specified at 22 ±3 °C. Unless otherwise stated, the values are for unloaded conditions. Some properties are interdependent. The designation "typ." indicates a statistical average for a property; it does not indicate a guaranteed value for every product supplied. During the final inspection of a product, only selected properties are analyzed, not all. Please note that some product characteristics may deteriorate with increasing operating time.
Downloads
Product Note
Product Change Notification Hexapod Cables
Product Change Notification Motor Driven Products
Product Change Notification H-811 Series
Product Change Notification H-811 Vent Holes
Product Change Notification Cable Change H-811.S2/H-811.F2
Datasheet
Documentation
User Manual MS235
H-811.I2, H-811.I2V, H-811.F2, and H-811.S2 miniature hexapods
3D Models
H-811.F2 3D Model
Software Files
PIVirtualMove
Ask for a free quote on quantities required, prices, and lead times or describe your desired modification.
Chiedi ad un Ingegnere!
Ricevere rapidamente una risposta alla tua risposta via email o telefono da un Sales Engineer dalla sede PI più vicina a te.
Tecnologia
Allineamento Attivo
In molti settori sta crescendo la necessità di allineare dispositivi con una accuratezza su scala nanometrica. Componenti ottici quali lenti o insiemi di lenti in piccole fotocamere, o anche il chip CCD stesso, devono essere posizionati con sempre maggiore precisione.
Posizionatori Multi-Asse
Le piattaforme Hexapod vengono utilizzate per il posizionamento e l'allineamento di precisione di carichi in tutti i sei gradi di libertà. tre assi lineari, e tre assi di rotazione.
Applicazioni
Packaging nel campo della Fotonica
L'assemblaggio e il packaging dei dispositivi fotonici richiedono sistemi di produzione altamente efficienti. L'allineamento è uno dei maggiori fattori di costo nella produzione di questi componenti, poiché viene ripetuto più volte nel processo di produzione. La rivoluzionaria tecnologia Fast Alignment di PI è stata ineguagliabile in queste sfide.
Hexapods nella Microproduzione
Cosa hanno in comune componenti ottici e fibre di vetro nella fotonica nei dispositivi mobili e negli orologi da polso di alta qualità?